منابع مشابه
Geometric disintegration and star-shaped distributions
Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri?s and Torricelli?s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured a...
متن کاملConvex and star-shaped sets associated with stable distributions
It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm corresponds is the polar set to a convex set in Rd called a zonoid. This work exploits most recent advances in convex geometry in order to come up with new probabilistic results for multivariate stab...
متن کاملGlobal Existence for High Dimensional Quasilinear Wave Equations Exterior to Star-shaped Obstacles
1. Introduction. The purpose of this article is to study long time existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. In particular, we seek to prove exterior domain analogs of the four dimensional results of [5] where the nonlinearity is permitted to depend on the solution not just its first and second derivatives. Previous proofs in exterior domains o...
متن کاملStar-Shaped and L-Shaped Orthogonal Drawings
An orthogonal drawing of a plane graph G is a planar drawing of G, denoted by D(G), such that each vertex of G is drawn as a point on the plane, and each edge of G is drawn as a sequence of horizontal and vertical line segments with no crossings. An orthogonal polygon P is called orthogonally convex if the intersection of any horizontal or vertical line L and P is either a single line segment o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Distributions and Applications
سال: 2019
ISSN: 2195-5832
DOI: 10.1186/s40488-019-0096-0